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Abstract

Aerial robots and drone-based payload delivery is in the spotlight and is considered
revolutionary for the logistics and transportation sectors.  In most use cases, the
payload is required to precisely follow a given path for safe and secure operation in a
cluttered environment. This work addresses the problem of designing a path following
controller for a point-mass payload tethered to a quadrotor. Specifically, we design a
smooth dynamic feedback controller that forces the suspended load to converge and
follow a large class of both closed and non-closed embedded curves. Using a local rep-
resentation of the dynamical system consisting of a quadrotor and the cable-suspended
payload, we show that the system has a well-defined vector relative degree. We treat
the given curve as a smooth manifold and then use set stabilization to find the maximal
control invariant manifold. The resulting controller guarantees that once the system
reaches the path, it stays on the path indefinitely. We demonstrate the performance of
the proposed controller through extensive simulations with practical sensor noise and
parametric uncertainties. Moreover, successful real-world experimental validation of
the proposed controller is demonstrated on a Quanser QDrone UAV platform with a
cable-suspended payload.



1 INTRODUCTION

Mobile robots, in particular unmanned aerial vehicles (UAVs), have gained central im-
portance because of their vast applications in areas as diverse as surveillance, agricul-
ture, warehouse inventory management, last-mile delivery, fire extinguishing, and disas-
ter relief operations. Specifically, multi-rotors UAVs such as quadrotors have achieved
immense popularity among industrial and academic research communities because of
its simple mechanical design, low-cost structure, vertical take-off and landing (VTOL)
ability, and agile dynamics [1,2]. In recent years, there has been an increased demand
for efficient aerial transportation of light to medium payload (up to few kilograms), and
a quadrotor can be an excellent choice for sueh a mission due to its compact size and
relatively higher thrust generation capability [3;4]:

Broadly speaking, there are two approaches to attach a payload with a quadrotor, i.e.,
active and passive attachment [5].  The former approach requires a gripper attached
to the body of the quadrotor. Although the gripper mechanism provides an additional
degree of freedom and the capability of aerial manipulation, it comes at the cost of loss
of agility due to an undesirable increase in inertia. The passive attachment uses a cable
attached to the quadrotor at one end and the load to the other end. The cable sus-
pension approach provides an agile platform and better manoeuvrability [6]; however,
it brings its own challenges in the controller design because of an additional degree
of under-actuation. In this work, we deal with the latter approach, i.e., a quadrotor
system attached with a cable suspended point-mass, as shown in Figure 1.1.

In this paper, we consider a path following problem for the system consisting of a
quadrotor attached with a cable suspended load. Given a non-self-intersecting smooth
curve in three-dimensional space and a quadrotor system attached with a cable sus-
pended load, our objective is to design a smooth dynamic controller such that the
cable-suspended load converges to the given path and follows it. ~ Unlike a trajectory,
a path is a set of points without a timing law associated with it. A path following
problem and a trajectory tracking problem are related to each other, but former is more
general since a path can be treated as a set of trajectories [7,8]. For example, there
exist such instances where a path following can be solved but the corresponding tra-
jectory tracking problem has no solution [9,10]. A key advantage of the path following
framework is that it allows the system to achieve path invariance, i.e., once the system
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Figure 1.1: Quadrotor with a cable-suspended payload. On the left is Quanser
QDrone UAV attached with a cable-suspended payload during flight. On the right is
the schematic diagram of a typical quadrotor with a cable suspended point mass.

converges to the given path, it stays on the path indefinitely [7]. Moreover, path follow-
ing approach precludes the planning and design of optimal trajectory characterized by
the minimum jerk or minimum snap, which is a requirement for most of the trajectory
tracking problems for the system under consideration [11]. Although path following
approach has been applied to the quadrotor system [12,13], there is no prior work that
deals with path following of the load suspended to a quadrotor through a cable for the
class of regular embedded curves.

It is well known that the configuration space of a quadrotor or a quadrotor attached
with'a cable suspended load is a smooth manifold [14]. In literature, approaches to the
design of a controller for non-linear systems evolving on a manifold can be classified into
coordinate free (or geometric) and local coordinate-based methods [15]. The geometric
methods employ a hierarchical controller design framework based upon an inner-outer
loop approach, which provides singularity-free control laws [16-19]. The inner loop
stabilizes the attitude of the system, whose convergence is followed by the convergence
of the outer loop, which stabilizes the position of the load. Although this cascade
control design method leads to a simpler design approach, however, the stability of the
individual loops does not automatically guarantee the convergence of the overall system,
for which the stability must be justified independently. ~ One of the shortcomings
of almost every existing geometric control method for the given system is that these
methods are intended to track a time-parameterized trajectory [5,17,19,20]. , which



has performance limitations as highlighted in [9]. Moreover, such trajectory tracking
controllers cannot guarantee precise path following in the sense that once they converge
to the trajectory, the system may leave the trajectory [21,22].

The second approach, i.e., the coordinate-based method using local charts leads to
local controllers that suffer singularities, such as gimbal lock [23,24].  This local
representation imposes a slight restriction on the flight envelope of the system, as
the roll and pitch angles of the quadrotor must remain within (—g, g) Despite this
constraint, a large class of both closed and non-closed curves can be followed without
approaching singularity [25].

In this paper, we consider a local coordinate-based approach, i.e., Euler angle repre-
sentation; therefore, to no surprise, our results are local [25]. However, unlike existing
approaches applied to the design of controllers for the system with a quadrotor and a
suspended load, we do not follow a cascade (inner-outer loop) structure and instead
propose a monolithic approach. To the best of our knowledge, this is the first time that
the monolithic design approach is being proposed for the system under study. This
design approach neither requires an assumption of time separation between quadrotor
attitude dynamics and quadrotor position dynamics, nor a time-scale separation be-
tween the quadrotor and the load [12]. Moreover, another distinction between our work
and the prior research work is that we propose a novel smooth dynamic feedback con-
troller that guarantees path invariance. In other words, once the controller brings the
payload to the path, the payload stays on the path indefinitely, while maintaining the
desired position, velocity or acceleration profile. Given an a priori non-self intersecting
path, the proposed path following controller enables operation of quadrotor carrying a
cable suspended load in challenging environments that require aggressive maneuvers,
such as congested or low clearance indoor space, corridors, and slalom courses.

Significantly less attention has been given to the path following problem compared to
the trajectory tracking problem. In [26], the authors also consider a similar problem
to the one we consider in this paper, i.e., a path following problem for a quadrotor
system attached with a payload via suspended cable. The key difference between our
work and [26]is that the latter presents an inner-outer loop control approach based on
reduction theorems, which allows the system to follow only straight lines. In [26], if the
desired path is not straight, then it needs to be approximated by a series of straight
lines, and the controller must switch from one segment to the other. Our proposed
approach neither requires a piece-wise approximation of the desired path nor switching
while following challenging curves.

1.1 CONTRIBUTIONS

We have made the following contributions.

1. We have proposed a novel dynamic transverse feedback linearizing controller that
allows the cable suspended load attached to the quadrotor to follow a large class



of both closed and non-closed curves.

2. Using a local coordinate approach, we have established that the system has a well-
defined vector relative degree in the neighborhood of a large class of curves (The-
orem 4.0.5), and have proved that after dynamic extension, the system is diffeo-
morphic to a chain of integrators (Corollary 4.0.6).

3. Our proposed technique differs from all existing methods that deal with quadrotor
and cable suspended load in the sense that our novel controller guarantees path
invariance for a class of curves.

4. Validation of the proposed controller design on a hardware platform consisting of
a Quanser QDrone and a cable suspended load.

The rest of the paper is organized as follows. After presenting math preliminaries,
we introduce the dynamic model of the quadrotor attached with cable suspended load
in Section 2. The formal statement of the path following problem for the system
under consideration is presented in Section 3. In Section 4, we present details of the
controller design, provide closed-form expression of the dynamic controller, and prove
the main result. Numerical simulation results under practical scenarios are discussed
in Section 4.2, and the numerical performance results for experimental validation are
presented in 5 . Finally, conclusions are drawn in Section 6.

1.2 NOTATION AND MATH PRELIMINARIES

The symbol := denotes equal by definition. The set of natural number is denoted by
N. The standard n-dimensional Euclidean space is an R-vector space denoted by R”

and it consists of ordered n-tuples (x1,...,x,), where each z; € R, fori € {1,2,...,n}.
Sometimes it is convenient to represent elements of the Euclidean vector space as n x 1
matrices, i.e., column vectors, and is denoted by = = col(zy,...,z,), for z € R". An

i-dimensional column vector consisting of all zeros is denoted by 0;. Given A € R™*™,
its transpose is given by AT € R™™. The standard inner product on R" is denoted by
(,) :R"xR™ — R, and the standard norm is denoted by |- || : R — R. A point to set
distance, for a'point € R and a set S C R", is represented by ||z| 4 := infyecs || — y]|.
The cross product of two vectors in the three dimensional Euclidean space is given by x.
Let (0, S;, and T; denote cos(i), sin(i), and tan(i), respectively, for i € {¢,0,1}. The
composition of two maps, h : A — B and s : B — C, is represented by soh : A — C.
A parameterized curve ¢ in R" is a map o : D — R"”, where the domain D = R for non-
closed curves, and D = Rmod P for closed curves of period P. For a P-periodic closed
parameterized curve o, (A + P) = o()\). Let f : R" — R™ be a C' map and p € R",
the derivative of f at p is denoted by df, := g—ﬁ‘x:p. For C*° maps f,g : R®" — R"

and a C*° map A : R® — R, the iterative Lie derivatives are defined as Lg/\ = A\,
L’;/\ = Lg(L’gffl)\), LyLyX = Ly(Lg).



2 DYNAMIC MODEL

In this article, we consider a quadrotor and a payload, which is attached to the center
of gravity of the quadrotor by a cable. We made the following assumption.

Assumption 1. The cable has zero mass and it cannot be stretched. The mass of the
payload, which is assumed to be a point-mass, is less than the maximum payload of the

quadrotor. Furthermore, the tension in the cable is assumed to be positive for all time .

Let 7 := {e1, €2, e3} be the fixed inertial frame and B:= {by,bs, b3} be the body frame
attached to the center of mass of the quadrotor. Let z,(¢) € R?* and v,(t) € R? be the
position and velocity of the quadrotor, respectively, and x,(t) € R? and v,(t) € R?® be
the position and velocity of the load, respectively. Let m, € R and m, € R be the mass
of the payload and mass of the quadrotor, respectively, and g € R be the acceleration
due to gravity. Let b3 = col(0,0,1) be the unit vector in z direction. Let u;(t) € R
be the total thrust produced by all four propellers of the quadrotor along the z-axis of
the body axis, and is assumed to be non-zero. Let p(t) € S* be the unit vector from
the quadrotor to the load. Let L € Rand T' > 0 € R be the length of the cable and
its tension, respectively. The position of the quadrotor and the position of the load are
related by

24(t) = 2lt) — Lp(t). (2.1)

Let Q(t) = col(Q4(t),Q2(t), () € R? be the body rates of the quadrotor, J :=
diag(Jy, Jy, J.) € R**3 be the inertia of the quadrotor with respect to the three
axes of B. Similarly, we define the total moments about the body axes by 7(t) :=
col(71(t), Ta(t), 73(t)) € R?, which along with the thrust u;(¢) constitute the four inputs
of the system under consideration. We assume that the orientation R(t) € SO(3) of
the quadrotor is represented locally by three Euler angles, i.e., roll-pitch-yaw ®(t) :=
col(¢(t),0(t),¥(t)) € R3 The dynamics of the quadrotor with a cable suspended

IFor a model that allows non-negative tension in the cable, hybrid control techniques can be used
to design a controller, for details see [27].



Table 2.1: Parameters and states of the system

Description Symbols

fixed inertial frame T :={ey,eq,e3}
quadrotor’s body frame B = {b1, by, b3}
constant cable length LeR

cable tension TeR

unit vector from quadrotor to the payload p € S?
constant mass of the quadrotor mg € R
constant mass of the payload my € R
position of the the quadrotor z, €R?
position of the payload r, € R3
velocity of the quadrotor v, €R?
velocity of the the payload vpe R?

thrust control input us € R

torque input of the quadrotor
constant inertia of the quadrotor
constant acceleration due to gravity

quadrotor body rates
rotation matrix of quadrotor

from BtoZ

Euler angles (roll, pitch, yaw)

7 := col(7y, 7o, 73) € R3

J = diag(J, J,, J.) € R?*3
geR

Q= COl(Ql, QQ, Qg) S R3
R € SO(3)

® = col(¢,0,v)

load [27,28], can be locally represented? as

where M is given by

M

i‘g = Uy
myty = —=T'p — mygbs
Ty =,

mqUq = uRbs — mygbs +T'p
d = MQ
JO=71—(QxJQ),

1 ST CyThy
0 Cy —S%
0 Sysect Cgsect

(2.2)

(2.3)

2Here, and throughout this paper, for simplicity of notation, we drop the time dependency of the
state variables when describing the dynamics



and R can be represented in terms of Kuler angles as

CyCy CpSeSy— CySy CsCySy+ SuSy
R = CgSw SwS@S(p + C¢Cw ngSwSe - ngCq/, . (2.4)
S, CyS, CyS,

By substituting the value of p from (2.1) to (2.2), we can write

x'gzl)g

T
V= ——— (xp — x5) — gb
0 meL(E q) gos
Tq = V4

. U
Uq = HtRb:;—gbg‘f' m
q q

d=MQ
Q=J1r1-(QxJQ).

(z¢ — T,)

Note that the state vector of the quadrotor system attached with the load has the states
col(zg, vg, g, vg, @, Q) := 2z := col(ay, - - - ,215) € R'® and the inputs are col(y, 72, 73, u;) €
R*. We define the position of the point mass (payload) in the inertial frame as the out-
put of (2.5)

y= h(z) =z, (2.6)

where h : R® — R? is a smooth map. A summary of system parameters and states are
given in Table 2.1.



3 PROBLEM FORMULATION

Informally, in the path following problem of quadrotor attached with a cable suspended
load, the objective is to make the cable suspended load converge to a given path, and
then follow it without leaving the path, using the four control inputs of the quadrotor.
We highlight the fundamental difference between trajectory tracking and path following,
i.e., a trajectory is a time parameterized curve, while a path is considered as a set of
points without any notion of time. Let us consider a curve 7, embedded in three-
dimensional space, with parameterization

o:D— R
A +— col (O'1<>\), 0'2()\), Ug()\))

Furthermore, we assume that-the given curve is regular, i.e., ||o’(A)|| # 0 for any
A € D. Since any regular curve can be unit speed parameterized by its arc-length [7],
we assume, without loss of generality, that the parameterization o of the curve is a
unit speed parameterization, i.e., ||o’(X)|| = 1. Similar to [25], we make the following
assumption about the curve.

Assumption 2. The curve v € R? is one-dimensional embedded sub-manifold. Given
any open set W, a smooth -map s : W C R®> — R? emists such that v = s~ 1(0) with
rank (ds,) = 2, forall y.€ 7.

Since.y = s71(0), for the system (2.5), the path in the output space (2.6) can be
represented by its zero-level set representation as

yi=57(0) = {y € R*: 51(y) = s2(y) = 0} .

Informally, the above assumption restricts the choice of path to non-self intersecting
smooth curves.

3.1 PROBLEM STATEMENT

Given a quadrotor system attached with a cable suspended load that satisfies Assump-
tion 1 and a regular, embedded C'*° curve  satisfying Assumption 2, design, if possible,



a smooth dynamic feedback controller

2 =A(z,z)+ B(z, 2)u

H = C(z, 2) + D(x, 2)u, (3:1)

Uy

with z € R¥, for some k € N that needs to be determined, and u € R*, such that if the
quadrotor attached with the cable suspended load is initialized in an open neighbour-
hood U x V C R¥® x R* with v C h(U), the system achieves the following objectives:

P1 for each (2(0),2(0)) € U x V), the system converges to the path, i.e., [[h(z(t))], —
0, as t — oc;

P2 the path v := s71(0) achieves output invariance, for all ¢ > 0;

P3 on the path 7, the payload and quadrotor meet additional application-specific
requirements such as

— point stabilization of the payload,
— the speed, acceleration or jerk of the payload achieve a desired profile, and

— the heading of the quadrotor satisfies a given reference profile.



4 DYNAMIC CONTROL DESIGN

For a quadrotor system attached with load, our objective is to-control the position of
the payload, i.e, z,, and also heading of the quadrotor, i.e., 1». Therefore, we define the
augmented-output of (2.5) be

§ = h(xg, ) = hw, 23, 13, 715) €R. (4.1)

Next, we demonstrate that the system (2.5) fails to achieve a well-defined vector relative
degree for any smooth function of the augmented output space (4.1). To be precise,
let o; : R® — R, 2y — () for i € {1,2,3} be smooth real-valued functions and
ay: R* = R, (24,9) — ay(xe, 1) be another smooth real-valued function. To this end,
we construct a virtual output function as

o ()

as(zy)

asz(xy)
(e, 1)

The following result shows that there does not exist any smooth function of the form y
in R* that would guarantee a well-defined relative degree of the system.

(4.2)

N
I

Lemma 4.0.1. System (2.5) with the output function (4.2) fails to achieve a well-
defined vector relative degree at any v € RS,

Proof. Consider system (2.5) and let

. T
f(z) := col (Ug, —m (g — x4) — gbs, vy,

—gbg +

T
7 (e —2g), MQ, T — (0 x JQ)) )
q
gl(x) := col (0157 %17 07 0)7 g2(‘x> := col (0167 %y; 0)7 g3<x> = col (0177 i)? and 94(:6) =
col (Og, miqug, 06), be smooth vector fields on R'®. Then, we can express the quadrotor
system (2.5) attached with a cable suspended payload in the control-affine form as

&= f(r) + gi(2)11 + ga(2)72 + g3(x) 73 + Ga(T)us.

10



By taking iterative Lie derivative of the functions «, for i € {1,2,3}, we get
Lg, Lo = 0, (4.3)

for k € {0,...,2} and 5 € {1,...,4}. Similarly, (4.3) holds true for j € {1,...,3} and
k = 3. The first nonzero Lie derivative appears when we take the fourth derivative
along the vector field gy, i.e., L§4Lf}ai # 0, for i € {1,2,3}.

For the function a4, the first non-zero Lie derivative appears when we take the second
derivative along the vector fields g and g3, while the Lie derivatives along the vector
fields g; and g4 are identically zero. Therefore, the decoupling matrix takes the following
form

0 0 0 Lyl

_ 0 0 0 L,IL*

D(z) = niree | (4.4)
0 0 0 LyLias

0 LyLjas LyLpou | 0
Clearly, D(z) is rank deficient for all z in R'® and-the system (2.5) fails to exhibit a
well-defined vector relative degree. O]

On way to interpret the rank deficient decoupling matrix in Lemma 4.0.1 is that the
flow of the output vector y vanishes along the vector field g;. This issue can be resolved
by delaying the control input w; using two integrators, which introduce two additional
states z = col(zy, z2). Let u; = 21, where 27 is the first state of the dynamic controller.
To delay the control input u; one more time, we select 2, = 25 and 2y = uy, where uy
is the the delayed control input. This leads to the following dynamic controller
ame (4.5)
Z9 = U{.
Let u = col(uy, ug,us,uy) := col(7y, 72, 73, u;). The augmentation of the two controller
states to the system is called dynamic extension and the extended system is given by

Ty = vy

Vg = _TrZL (xg —x4) — gbs

Lqg = Vg

Vg = ing — gbs + (xp — xq) (4.6)
' mq q

d = MQ

Q=J"1(1—(QxJQ)

21 = %9

Z9 = Uq.

11



For notational simplicity, we do not differentiate between the states of system (2.5)

and the controller states (4.5), i.e., (z1,...,215) and (z1,2). Let xy9 = 2z and
Too = zo. Thus, the state vector for the extended system (4.6) is represented by
x 1= col(xg, vy, Ty, Vg, P, 82, 21, 22) = coOl(x1, . .., Te0) € R*®. For smooth vector fields
f(x) :=col <Ug 1 (xg — xq) — gbs,v ing — gbs+
) mgL q » Vg mg
T -1
7 (xp—xg), MQ, T — (02 % JQ),0,0) )

gl(x) := col <0157 i? 04)7 g?(x) := col (0167 %ya 03)7 g3(X) := col (0177 i? 02)7 and g4(x) =
col (019, 1) in R?°] the extended system (4.6) can be written in the eontrol-affine form

4

%= f() + 3 ai(x)us (47)

=1

To achieve the objectives P1 and P2, we exploit the zero-level set representation of the

given path v and define
041(:1:)].:80 . :lsloh(:c)]
l wn(z) | h(z) 5 0h(z) |’ (4.8)

such that g%; =0, fori € {1,2},and j € {4,5,...,18}. Loosely speaking, the maps a;
and as are solely depended on z;.

The lift of the given path v to the state space of the quadrotor attached with the cable
suspended load system yields a submanifold of R? i.e.,

I = {x € R : 5,(h(z)) = sa(h(z)) = 0}.

When all the states of the system, which include the quadrotor states and the states of
the payload, converge to the set I', the position of the payload x, converges to the path
~v. However, there is no guarantee that the payload never leaves the path, once all the
states of the system (4.6) converge to submanifold I". In other words, the lifted path T’
isnot an invariant set. Next, we define the path following manifold as an invariant set
contained in T'-[10].

Definition 4.0.2. Given a path v, the path-following manifold T* of (4.6) is the maz-
imal controlled invariant submanifold contained in the lift of v. Moreover, I'* is a
non-empty subset of I', with dimension n* < 20.

The path following manifold can be found by applying the zero dynamics algorithm
and is given by

(4.9)



The set I'* can be interpreted as an ensemble of all maneuvers of the closed-loop system
such that an input signal u can be selected to restrict the evolution of the payload’s
position to the given path v. Now, we state two elementary results, which will be used
later to prove the main result of this section.

Lemma 4.0.3 ( [29]). For three linearly independent vectors vy,vy, and vz all in R3,
<U1, (UQ X 1)3)> 7& 0.

Given o and «; defined in Section III and Section IV, respectively, let d,,,a; := col(

for i € {1,2}, and let o’ := col(%3, 922, 9%).

80¢i 80&1' 80@)
Ox1? Oxg? Oxz/?

Lemma 4.0.4 ( [12]). Given two smooth maps oy and as, as defined in (4.8)yspan{d,, a1, d,,a0,0'} =
R3 for all x, € .

To achieve P3, we invoke the parametric representation o of the path + to define
another function as in the output space. Consider an open neighbourhood of the curve
7, denoted by N(y) C R?, such that the following condition is satisfied. Given an
element y in the neighbourhood set N (7), there exists a unique y* € 7 such that
lylly = lly — y*||. Given such an open set N (), we can define the following map:

w:N(y) —»D
y =hang il [lg — o (V) (4.10)
AeD y
Using (4.10), the map g is defined as
as :=woh:R® 5 R. (4.11)

To specify a constraint on the heading of the quadrotor, we can select another function
as: R* - R
(ZU[, 1/}) = 064(374, ¢>,

such that ay is smooth and dy(ay) # 0, for all x € R*. In summary, given a; and s
satisfying Lemma 4.0.4, a3 defined in (4.11), and a4 defined in (4.12), we construct a
refined virtual output function

(4.12)

aq () s1 0 h(x)
_ as(x) | s20hn(2)
1= ) |~ | wohia) (4.13)

(e, ) (e, 1)

Next we determine the vector relative degree of the quadrotor system attached with
cable suspended payload.

Theorem 4.0.5. The extended system (4.7) satisfying Assumption 1, with output de-
fined in (4.13), achieves a well-defined vector relative degree of {6,6,6,2} everywhere
on the set T* N {x € R?" : x19 # 0, cos(z13) # 0, cos(z14) # 0}.

13



Proof. Let us consider x* € I'* be an arbitrary element and let the path parameter
A* € D be such that h(z*) = o(X*). By Definition 4.0.2, I'* C I" and it implies that
the output h(x*) is on the given path . By the definition of vector relative degree, we
must establish that for each z in a neighbourhood of z*

Lgichak(x) =0, L, a4(x) =0,

forie {1,2,...,4}, j €{0,...,4}, k € {1,2,3} and that the 4 x 4 decoupling matrix

Ly, Lo () s Lyon ()

D(z) = Lgleag(x) Lg4L§’ca2(a:) 1)
Ly, Lyas(z) Lg,Las(z) |V
L Lfa4(x) LfOé4(13)

is full rank. Direct calculation of Lie derivatives yield
LgiLgcozk(x) =0, Ly, a4(x) =0,

for i € {1,2,3,4}, and j € {0,...,4}. To show that the decoupling matrix is full rank,
we analyze its determinant.

T323 cos(z13)

det(D(x)) = (det( )> (Ops)

(8931041 ((92;204203 — 895304205) + (415)
85,;2041 (8130420,1 — amagaé) —+

J) L3mgm3 cos(z14

Oy v1 (O, 00y — Opy1907))
which can be further simplified as

T332, cos(z13)
IMP() = (det(J)Li”m?mZ’ COS($14)> Gy (4.16)
<dzea17 (dwOéz X OJ)>‘

The determinant of the decoupling matrix vanishes whenever any term in the numerator
of (4.16) goes to zero or any factor in the denominator is infinity. The determinant
of J is finite since all the diagonal terms of the inertia matrix are finite. Moreover,
mg, and m, are the mass of quadrotor and suspended point mass, respectively, which
are positive finite constants. The tension in the string 7" is positive by Assumption 1.
The term cos(zy4) is bounded and is therefore finite; the physical parameter L, which
is the length of cable, is non-zero. By Lemma 4.0.4, the span{d,, a1, d,,as,0'} = R>.
Therefore, by Lemma 4.0.3, the (d,, o1, (dy,a2 X 0')) # 0. Also, by definition, Jyoy #
0. Therefore, we have shown that the determinant of the decoupling matrix is non-
zero for all z* € T* N {x € R?® : x19 # 0, cos(z13) # 0, cos(z14) # 0} and the extended
system (4.7) achieves a well defined vector relative degree of {6,6,6,2}. O
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Next we define a coordinate transformation that converts the nonlinear extended system
to an exact linear form.

Corollary 4.0.6. Let v* € T*\{x € R® : 113 = 214y = +7/2, 219 = 0}. There exists a
neighbourhood U C R* containing x* such that the mapping 7 : U C R*® — F(U) C
R2°, defined by

gz Lérl&l (x>
G | | L aa()
n; - 9(1‘) - L;‘;lo@(x) ) (417)
14 L} au(x)

forie{l,...,6} and j € {1,2} is a diffeomorphism.

Proof. The choice of the coordinates (¢,¢,n,u) € R* is clear from (4.17). Next we
need to check the rank of the 20 x 20 Jacobian matrix of the coordinate transformation
7. The determinant of the Jacobian matrix simplifies to

T2y cos?(x13)

det(dT+) = ( ) (Do)’

((dweala (dwéOQ X OJ)>)6

LPmg?mg cos(x14) (4.18)

a* ]

which can be easily justified to be non-zero by using arguments similar to that used in
the proof of Theorem 4.0.5. The inverse function theorem [30, Theorem 5.23] implies
that the coordinate transformation 7 is a diffeomorphism onto its image. O

The diffeomorphism .7 from Corollary 4.0.6 allows us to the express the system in term
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of transformed states (¢,(,n, 1) € R¥, ie.,

& =6
& =&
' 4
€ = Lbar + > Ly, Lo
i=1 =T ~1(&,¢n,1)
G =G
G =G
‘ 4
b= Loas+ 3" Ly s (4.19)
i=1 =T ~1(&C M)
=12
N5 = N6
4
M = Ljos + Y Ly Ljosu;
i=1 =T ~1(&,Lm.p)
fl1 = 2
4
=1 12«771(5,47%#)

This coordinate transformation suggests a natural choice of feedback transformation

Uy —L%ay Ve
Us . —L?ag V¢
ws| = D™ (x) ~La ol | (4.20)
Uy —Liay vH

where (v, v, v", v*) are auxiliary control inputs. By Theorem 4.0.5, this controller (4.20)
is well-defined in a neighbourhood of every 2* € T'\{x € R* : 213 = 214 = £90°}. This
means that in a neighbourhood of the path v, the quadrotor system with the cable
suspended payload (4.6) is reduced to four decoupled chain of integrators.

51252 élZCZ m="n 1=}
§2=8 Q=0 m=mn fp=710"

) ) ) (4.21)
& =0 (g=0C 7 =10"
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The above system consists of four decoupled linear time invariant (LTI) systems and
any linear control technique can be used to stabilize (4.21). We call the first chain of
integrators £-subsystem, the second chain of integrators (-subsystem, the third chain of
integrators n-subsystem and fourth chain of integrators u-subsystem. The output (4.13)
is a flat output [31] for the quadrotor system with a load (4.6) because these outputs
transform the system to a fully linear system. The linear form of the system in the
transformed coordinates simplifies the design of path following controllers.

4.1 AUXILIARY CONTROLLER DESIGN

In the previous section, we showed that the quadrotor system with the cable sus-
pended payload (4.6) is geometrically equivalent to the chain of integrators (4.21) via
the coordinate and feedback transformations (4.17), (4.20). This geometric equivalence
significantly simplifies the controller design process, as the chain of integrators in (4.21)
can be controlled using elementary linear control techniques. It is intuitive to see that,
in order to bring the system on the set I', we exponentially stahbilize &- and (-subsystem
by the following controllers:

6

vt =Y KiE (4.22)
i=1
6

v =3 kG (4.23)
=1

with appropriate values of gains /{:-5, and k:f, which can be determined by pole placement

or similar other L'TT system techniques. ‘When all the £ and ( states are zero, the system

converges to the path, i.e., P1 and P2 are satisfied and path invariance is achieved.

To fulfill the objective of making the cable suspended load stop along the path, control-
ling the speed of the suspended load along the curve, and forcing the cable suspended
load to follow a given acceleration profile, jerk and high derivatives along the curve, we
design the linear controller of the form

6
v ="k (g — 0T, (4.24)
=1

where the gain k] can be determined using pole placement or similar linear control
techniques.

It should be noted that n; specifies the position of the payload along the path. By
selecting n{ef as the target value, point stabilization of the suspended load along the
path is achieved. By setting k7 = 0, and selecting n5% as the target velocity profile,
the suspended load follows the desired profile along the curve. Similarly, by selecting

k! = kI = 0, and setting 5% to the reference acceleration profile, the suspended

17
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Figure 4.1: The overall system architecture for the proposed controller design is

shown. The feedback block transforms the non-linear dynamics to an exact linear
form. The outputs of the linear controller are fed into the dynamic feedback controller
block that computes the control inputs for the system.

payload follows the desired profile. In other words, the linear controller given by (4.24)
satisfies P3.

The heading angle of the quadretor ¢/ can be controlled by designing a similar linear
controller for the p-subsystem

vt = K (= 1) + Kb oo, (4.25)

where the gains can be selected using linear control techniques. This controller allows
to achieve a given reference profile for the yaw angle, and as a consequence the closed
loop system achieves objective P3. In summary, the coordinate and feedback trans-
formations (4.17), (4.20) convert the system (4.6) into an exact linear form, and the
auxiliary linear controllers (4.22), (4.23), (4.24), and (4.25) satisfy P1-P3, and hence,
path following problem is solved. The overall control scheme is shown in Figure 4.1.

4.2 SIMULATION RESULTS

In this section, we present simulation results of the quadrotor system attached with a
cable suspended payload for two scenarios. First, we present the case when the task
is to follow a given closed path. Next, we investigate the case when the system is
required to follow a non-closed curve in the presence of parametric uncertainties and
Sensor noise.
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4.3 PATH FOLLOWING OF A CLOSED CURVE

The goal is to make the suspended load follow the given parametric curve
o > col(4cos(N),4sin(A), 10 + sin(N)).

In other words, the target is to make the cable suspended load converge and follow the
following path
22+ 22— 16

z3 — 10 + sin (tan_l(%))
tan—1(22)
1

™
L5 — 4

y= (4.26)

The path following maneuver is shown in Figure 4.2. The desired path v is shown

12 ~
11.5 -
11 -
10.5 -
=
& 104
S
Iy}
95 -
—_— -’}/
9 2,
85 |= = T/
g cable ~
5 | @ load 5
B cuad. 0
5 -5
x(m) y(m)

Figure 4.2:  The three-dimensional position of the quadrotor and the cable-suspended
load is shown in the output space. A system schematic has been overlayed on the curves
traced by the load and the quadrotor at periodic intervals in time. The system was
initialized away from the path, then it converged to the assigned path and subsequently
maintained itself on the path.

by the dotted green line and the path traversed by the load is shown by the solid blue
line. The path traversed by the quadrotor for this mission is shown by a solid red line.
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Figure 4.2 shows the time snapshots of the quadrotor with the cable suspended load at
every second. The cable is represented by the grey line and the load is represented by
a solid black blob. As seen in the figure, the system is initialized away from the desired
path, i.e., 2,(0) = col(5,5,10), and the controllers (4.22) and (4.23) force the load to
converge to the desired path. Specifically, not only, the load converges to the set I'; but
it converges to I'*. Since, I'* is invariant, the load never leaves the set, i.e., the load stays
on the path for all future time. Another way to interpret the stability of theset I'* is to
investigate the state trajectories of the &- and (-subsystem. As seen in Figure 4.3, all
the £ and ( states converge to zero, i.e., the suspended payload converges to the path,
and it stays on the path for all time. The motion along the path is governed by the

80
5 60F —&
S 0l — &
g &
@ 20 }s &4
o R — —&r
_20 Il Il Il Il Il Il Il 66 I
0 2 4 6 8 10 12 14 16 18 20
t(sec)
600
400 o
¢ —G
8 200} Gs
n G
0 >g’_.¥f — (=
Go
_200 Il Il Il Il Il Il I
0 2 4 10 12 14 16 18 20
t(sec)

Figure 4.3: Trajectories of £ and ( states. The state &; is the distance from the desired
path in the xy-plane. The states &;,&3,...,£¢ represents the first derivative of &;,&s,...,&s,
respectively. The state (; is the distance of the load from the desired path along
the z-axis.” Similarly, the states (5,(3,...,(g represents the first derivative of (i,(s,...,(5,
respectively.

n-subsystem. The goal in this simulation is to follow the desired path with a constant
angular velocity of 0.5 rad/secs in the counter clockwise direction, i.e. 7y — 0.5 = 0.
By applying the controller (4.24), it can be seen in the top plot of Figure 4.4 that 7,
converges to the desired speed of 0.5 rad/secs. This makes 7; evolve freely, while the
states 73, . .., ng converge to zero, as shown in Figure 4.4. The heading of the quadrotor
is forced to converge to the desired heading value by the controller (4.25). As seen in the
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Figure 4.4:  Trajectories of n and u states are shown in the figure. The state n; is

the position of the load along the desired curve. The states 72,n3,...,&5 represent the
velocity, acceleration, and higher derivatives, respectively. p; represents the yaw-angle
of the quadrotor, while s represents the derivative of the yaw-angle.

bottom plot of Figure 4.4, the first p-state converges to the desired value of 7/4, while
o converges to zero. Finally, in Figure 5.7 control inputs are shown. It can be seen
in the figure that, on average, 11.5 N of thrust force is required to hover the system.
Initially, a larger control effort can be observed in the body torques, which is needed to
bring the system to the desired height and the desired path. However, as shown in the
figure, even the initial torques are within the actuation limits. Cable tension over the
period of time is shown in Figure 4.6. It can be seen that the oscillations in the cable
tension correspond to changing height profile of the given path as the quadrotor moves
up along the curve, the cable tension increases, and vice versa.

4.4 PATH FOLLOWING OF A NON-CLOSED CURVE WITH NOISE

In this subsection, we consider the path following problem for the quadrotor tethered
to a load in a practical scenario. The imperfections in a practical situation are mod-
eled by the presence of Gaussian noise in sensing the state and the uncertainties in the
system parameters. We assume 1% of parametric uncertainties for m,, my, and L
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Figure 4.5:  Control inputs, i.e.; thrust and the body torques, are plotted for a closed
path following scenario. It can be observed that the control inputs do not exceed the
actuation limits of the plant.

as these parameters can be precisely measured. However, we assume 10% parametric
uncertainties for the inertia matrix of the quadrotor, as it is difficult to measure the in-
ertia matrix accurately. We assume that quadrotor is equipped with a standard inertial
measurement unit (IMU), such as the one equipped on AscTech Pelican quadrotor, and
the on-board computer gives measurements of angles of the quadrotor and body rates.
Moreover, we assume that the quadrotor is operating in an indoor arena equipped with
Vicon motion capture system which can measure position and velocity of the load and
quadrotor. We simulate the system under practical noise level for these sensors, for
details see [32].

In the presence of uncertainties and sensor noise, as mentioned above, the task is to
make the cable-suspended load follow the non-closed curve

A = col(A, sin(\), 10).

In other words, the target is to make the cable suspended load converge and follow the
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Figure 4.6: Cable tension is plotted as a function of time during the flight of the
quadrotor and the cable-suspended load. It can be observed that the tension varies as
the quadrotor adjusts its height to keep the load onto the assigned path.

path
Ty — Sin a7
r3 — 10

o (4.27)

<
I

s
Ti5 — 4

The system is initialized at a challenging initial position of z,(0) = col(0,—10.1, 10),
and as shown in Figure 4.7, the load converges to the path. It can be seen in the
figure that the quadrotor undergoes large rotations about the roll and pitch axis to
make the load converge to the desired path v and then forces the load to stay on the
desired path. Figure 4.8 shows that both &- and ( states converge to zero, i.e., the path
following manifold I'* achieves stability. We conclude this section by presenting the
state trajectory plots of the n- and p-subsystem. As seen in the top plot of Figure 4.9,
12 converges to the desired value, while n; is evolving freely. The rest of the n states
get close to zero. The convergence of 74 is more sensitive to noise due to the sixth-order
derivative of the position of the load. We want to highlight that irrespective of the
noise levels in 7g, the load precisely follows the path. Similarly, in the bottom plot of
Figure 4.9, the state p; converges to the desired heading value, and ps converges to
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xz(m) 20

Figure 4.7:  The three-dimensional position of the quadrotor and the cable-suspended
load is shown in the output space for-a non-closed path. A system schematic has been
overlayed on the curves traced by the load and the quadrotor at periodic intervals in
time. The system was initialized away from the path, then it converged to the assigned
path and subsequently maintained itself on the path.

Zero.
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uncertainties are shown in the figure. The state & is the distance from the desired
path in the xy-plane. The states &;,&s,...,&6 represents the first derivative of &;,&s,....&s,
respectively.” The state (; is the distance of the load from the desired path along
the z-axis. Similarly, the states (3,(3,...,(s represents the first derivative of (1,(s,...,(5,

respectively.
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Figure4.9: Trajectories of n and p states in the presence of sensor noise and parametric
uncertainties when following a non-closed curve. The state 7, is the position of the load
along the desired curve. The states 12,73,...,&5 represent the velocity, acceleration, and
higher derivatives, respectively. u; represents the yaw-angle of the quadrotor, while p
represents the derivative of the yaw-angle.
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5 BEXPERIMENTAL RESULTS

In this section, we first discuss the experimental setup along with details of the hard-
ware implementation of the proposed controller. Finally, we demonstrate successful
real-world experimental validation of the proposed controller 'on a Quanser QDrone!
quadrotor system with a cable suspended payload.

5.1 EXPERIMENTAL SETUP

The experimental setup consists of a flying arena, a camera system, a UAV with a cable
suspended load, a ground station, and a WiFi router, as shown in Figure 5.1. The flying
arena has dimensions given by 10m x-6m x 11m and is equipped with 16 Natural Point
Optitrack Flex-13 cameras that cover the whole space. The Optitrack camera system,
as shown in Figure 5.1, is connected to a ground station via high-speed USB cables.
Moreover, to ensure human safety, the arena is surrounded by a protective net, and
protective floor tiles ensure drone safety. The UAV used in this experimental work is
a drone manufactured by Quanser, called QDrone. The Quanser QDrone autonomous
air vehicle is a mid-sized quadrotor equipped with a powerful on-board Intel® Aero
Compute Board (powered by a quad-core Intel Atom® processor) Quad-core 64-bit
2.56 GHz processor 4 GB LP-DDR3-1600 RAM, and a custom impact-resistant carbon
fiber frame. The dimensions of QDrone are 40 x 40 x 15 cm, and it weighs around
850 g with batteries. ' The maximum payload capacity of QDrone is 300g. QDrones
are equipped with four high-speed Electronic Speed Controlled (ESC) brushless motors
with Hall-effect sensor outputs. The drone has a 3-axis 16-bit accelerometer, range
configurable for +2¢g to +16g, a 3-axis gyroscope, range configurable for 125 deg/s to
+2000 deg/s, and a 3-axis magnetometer. Infra-Red (IR) markers are attached with
QDrone, and the cable-suspended load to get tracked by the camera system, as shown
in Figure 5.2.

The data stream coming from all 16 cameras is fed into the software, Motive, that
comes with the camera system. The motive software runs an optimization algorithm
and calculates an accurate pose of the system, which consists of a quadrotor and a
cable suspended load at 100 Hz. The pose information provided by the motive software

Thttps://www.quanser.com/products/qdrone/
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LAN

Figure 5.1:  An experimental setup based on the Quanser QDrone system is shown
in the figure. The overall design consists of 16 cameras, as shown in the top bock; a
ground station, as shown in the right bock; a WiFi router, shown in the bottom block;
and QDrone during flight with-a cable-suspended payload, as shown in the left block.

consists of the three-dimensional position of the quadrotor and load and the orientation
of the quadrotor. This information is sent to the onboard controller mounted on the
quadrotor via a high-speed WiFi link. Opti-track data and the IMU-sensor data are
fused together using vendor-provided complementary filter modules. Moreover, using
Hall-effect sensors, motor speed and thrust is measured. In summary, at this point, the
system makes all the required state information available at 100 Hz.

5.2 HARDWARE IMPLEMENTATION

Before presenting the experimental results, we enlist relevant system parameters in
Table 5.1. In this experiment, the assigned path to be followed by the load is a unit
circle at the height of 0.3 meters with a center coinciding with the center of the arena. At
the outset of the experiment, both the quadrotor and the cable are lying on the ground.
The tension in the cable at this stage is zero. Therefore, the quadrotor initializes in
a mode that takes it off to a height such that it hovers with load hanging above the
ground. In this way, before the controller is invoked, it is ensured the tension in the
string is non-zero (Assumption 1), and the swing in the load is sufficiently damped. The
position of the load and the quadrotor is shown in Figure 5.3 throughout the duration
of the flight using blue and red colored curves, respectively. The initial position of
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—

IR markers Cable suspended
Load

Quanser QDrone

Figure 5.2:  QDrone with cable-suspended load is shown in the figure. The IR markers
are attached to both the quadrotor and the cable-suspended load to get tracked by the
Optitrack camera system.

the two rigid bodies, i.e., the load and the quadrotor, on the ground are indicated
by markers in the figure. Once the quadrotor starts hovering and the load swing is
reasonably reduced, the proposed controller is invoked, and the load starts approaching
and traversing along the assigned circular path. The gains of the controller are carefully
designed using classical pole-placement techniques and further refined by tuning. These
gains are shown in Table 5.2. At the termination of the mission, the autonomous landing
mode of the quadrotor is activated. This results in both the load and the quadrotor
safely land on the ground.

Due to the sensor noise and small errors involved in state estimation, an error could
be introduced in the position of the load with reference to the assigned path. For the
experiment under discussion, the position error in the x-y plane is plotted in Figure 5.4,
and the error in the height of the load is shown in Figure 5.5. As shown in Figure 5.4
and Figure 5.5, the initial error is large as the QDrone prepares for the mission. The
error starts reducing as the controller is invoked around 7 seconds after the start of
the experiment. In the steady-state, the system performs very well as the magnitudes
of the position errors are small even in the presence of latency and noise, as shown in
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Table 5.1: Parameters of QDrone and cable suspended load

Description Physical value

cable length L 0.4 m

mass of the quadrotor m, 0.85 kg

mass of the payload m, 0.13 kg

inertia of the quadrotor J = diag(J, J,, J;) (0.01,0.0082,0.0148) kg.m?
maximum payload capacity 0.3 kg

Table 5.2: Controller gains

Description Symbols Values
¢-system gains (4.22) {k§ kS, KS, {41.0473,133.8854, 181.2496,
kS, kS KS } 130.3594, 52.5375, 11.2500}
(-system gains (4.23) {k§ kS KS, {41.0473,133.8854, 181.2496,
kS, kS, k¢ } 130.3594, 52.5375, 11.2500}
n-system gains (4.24) {ki, k3, k3, {0.0,43.8716, 74.2399
kKD KD 66.7440, 33.6240,9.0000}
p-system gains (4.25) {K{' K5} {0.2750, 1.0500}
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Figure 5.3: Position of the suspended load and the Quanser QDrone in a three-
dimensional arena. The initial position of the load and the quadrotor are indicated by
markers. The circular path followed by the load is also shown.

Figure 5.4 and Figure 5.5.

Finally, we show the control effort, i.e., total thrust u; and body torques 7, generated
by QDrone in Figure 5.6 and Figure 5.7, respectively. It can be seen that the control
effort generated by the system corresponds to the overall inertia of the drone and the
mass-of the-suspended load. Also, the control effort indicates that the controller can
successfully stabilize the path following manifold without exceeding the actuation limits
of the QDrone system, i.e., 16 N thrust limit and 0.8 N-m body torques limit. Note
that in all experimental results reported in this section, the presented figures contain
valid data once the controller is invoked (around 7 sec). The overall system works in
the hover mode (i.e., the tension in the cable is non-zero). As seen in Figure 5.7, the
control torque 7, is relatively smaller compared to 7, and 7, because the quadrotor pose
is commanded to a constant value. In contrast, the quadrotor needs to produce small
movements in the roll and pitch axis to follow the given circular path.
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Figure 5.4: Path following error in xy-direction is shown in the figure. This error
indicates the difference between the assigned path and the actual position of the load in
the x=y plane. The initial error is large when the QDrone is hovering above the ground,
and the error reduces in magnitude as the controller takes over. The sign of the error
indicates whether the load is inside or outside the assigned path.
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Figure 5.5:  Path following error in the z direction is shown in the figure. The error
indicates the difference in the assigned path and the height of the load. The controller
reduces the initial error in height, and the load approaches the path and follows it.
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Figure 5.6:  Thrust control input u; generated by the QDrone while following a circular
path with a cable suspended load.
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Figure 5.7:  Control torques 7,, 7,4, 7, generated by the QDrone UAV to make the cable
suspended load follow the given circular path. It can be seen that the control efforts
are well within the saturation bounds.
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6 CONCLUSION

This paper considers the path following problem for a quadrotor tethered to a load
through an inelastic cable. We identify a class of all smooth functions in the output
space that ensures the system exhibits a well-defined vector relative degree. A novel
smooth dynamic feedback controller is proposed for a large class of both closed and
non-closed curves. The proposed controller offers three distinct features: a) the load
convergence to the desired path and path invariance; b) the desired motion of the
load along the path, which involves point stabilization on the path, following a desired
velocity or acceleration profile along the path; ¢) maintaining a desired orientation of the
quadrotor throughout the mission. Simulation results demonstrate the performance of
the proposed controllers in the presence of noise and modeling uncertainties. Moreover,
successful real-world experimental validation of the proposed controller is demonstrated
on a Quanser QDrone UAV platform with a cable-suspended payload.
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